000 05349nam a22005775i 4500
001 978-3-540-72927-3
003 DE-He213
005 20240730192517.0
007 cr nn 008mamaa
008 100301s2007 gw | s |||| 0|eng d
020 _a9783540729273
_9978-3-540-72927-3
024 7 _a10.1007/978-3-540-72927-3
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aLearning Theory
_h[electronic resource] :
_b20th Annual Conference on Learning Theory, COLT 2007, San Diego, CA, USA, June 13-15, 2007, Proceedings /
_cedited by Nader Bshouty, Claudio Gentile.
250 _a1st ed. 2007.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2007.
300 _aXII, 636 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4539
505 0 _aInvited Presentations -- Property Testing: A Learning Theory Perspective -- Spectral Algorithms for Learning and Clustering -- Unsupervised, Semisupervised and Active Learning I -- Minimax Bounds for Active Learning -- Stability of k-Means Clustering -- Margin Based Active Learning -- Unsupervised, Semisupervised and Active Learning II -- Learning Large-Alphabet and Analog Circuits with Value Injection Queries -- Teaching Dimension and the Complexity of Active Learning -- Multi-view Regression Via Canonical Correlation Analysis -- Statistical Learning Theory -- Aggregation by Exponential Weighting and Sharp Oracle Inequalities -- Occam's Hammer -- Resampling-Based Confidence Regions and Multiple Tests for a Correlated Random Vector -- Suboptimality of Penalized Empirical Risk Minimization in Classification -- Transductive Rademacher Complexity and Its Applications -- Inductive Inference -- U-Shaped, Iterative, and Iterative-with-Counter Learning -- Mind Change Optimal Learning of Bayes Net Structure -- Learning Correction Grammars -- Mitotic Classes -- Online and Reinforcement Learning I -- Regret to the Best vs. Regret to the Average -- Strategies for Prediction Under Imperfect Monitoring -- Bounded Parameter Markov Decision Processes with Average Reward Criterion -- Online and Reinforcement Learning II -- On-Line Estimation with the Multivariate Gaussian Distribution -- Generalised Entropy and Asymptotic Complexities of Languages -- Q-Learning with Linear Function Approximation -- Regularized Learning, Kernel Methods, SVM -- How Good Is a Kernel When Used as a Similarity Measure? -- Gaps in Support Vector Optimization -- Learning Languages with Rational Kernels -- Generalized SMO-Style Decomposition Algorithms -- Learning Algorithms and Limitations on Learning -- Learning Nested Halfspaces and UphillDecision Trees -- An Efficient Re-scaled Perceptron Algorithm for Conic Systems -- A Lower Bound for Agnostically Learning Disjunctions -- Sketching Information Divergences -- Competing with Stationary Prediction Strategies -- Online and Reinforcement Learning III -- Improved Rates for the Stochastic Continuum-Armed Bandit Problem -- Learning Permutations with Exponential Weights -- Online and Reinforcement Learning IV -- Multitask Learning with Expert Advice -- Online Learning with Prior Knowledge -- Dimensionality Reduction -- Nonlinear Estimators and Tail Bounds for Dimension Reduction in l 1 Using Cauchy Random Projections -- Sparse Density Estimation with ?1 Penalties -- ?1 Regularization in Infinite Dimensional Feature Spaces -- Prediction by Categorical Features: Generalization Properties and Application to Feature Ranking -- Other Approaches -- Observational Learning in Random Networks -- The Loss Rank Principle for Model Selection -- Robust Reductions from Ranking to Classification -- Open Problems -- Rademacher Margin Complexity -- Open Problems in Efficient Semi-supervised PAC Learning -- Resource-Bounded Information Gathering for Correlation Clustering -- Are There Local Maxima in the Infinite-Sample Likelihood of Gaussian Mixture Estimation? -- When Is There a Free Matrix Lunch?.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer science.
_99832
650 0 _aAlgorithms.
_93390
650 0 _aMachine theory.
_9150231
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aTheory of Computation.
_9150232
650 2 4 _aAlgorithms.
_93390
650 2 4 _aFormal Languages and Automata Theory.
_9150233
700 1 _aBshouty, Nader.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9150234
700 1 _aGentile, Claudio.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9150235
710 2 _aSpringerLink (Online service)
_9150236
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783540729259
776 0 8 _iPrinted edition:
_z9783540839231
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4539
_9150237
856 4 0 _uhttps://doi.org/10.1007/978-3-540-72927-3
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c94289
_d94289