000 03685nam a22006135i 4500
001 978-3-540-31351-9
003 DE-He213
005 20240730194848.0
007 cr nn 008mamaa
008 100417s2006 gw | s |||| 0|eng d
020 _a9783540313519
_9978-3-540-31351-9
024 7 _a10.1007/11615576
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aConstraint-Based Mining and Inductive Databases
_h[electronic resource] :
_bEuropean Workshop on Inductive Databases and Constraint Based Mining, Hinterzarten, Germany, March 11-13, 2004, Revised Selected Papers /
_cedited by Jean-Francois Boulicaut, Luc De Raedt, Heikki Mannila.
250 _a1st ed. 2006.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2006.
300 _aX, 404 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v3848
505 0 _aThe Hows, Whys, and Whens of Constraints in Itemset and Rule Discovery -- A Relational Query Primitive for Constraint-Based Pattern Mining -- To See the Wood for the Trees: Mining Frequent Tree Patterns -- A Survey on Condensed Representations for Frequent Sets -- Adaptive Strategies for Mining the Positive Border of Interesting Patterns: Application to Inclusion Dependencies in Databases -- Computation of Mining Queries: An Algebraic Approach -- Inductive Queries on Polynomial Equations -- Mining Constrained Graphs: The Case of Workflow Systems -- CrossMine: Efficient Classification Across Multiple Database Relations -- Remarks on the Industrial Application of Inductive Database Technologies -- How to Quickly Find a Witness -- Relevancy in Constraint-Based Subgroup Discovery -- A Novel Incremental Approach to Association Rules Mining in Inductive Databases -- Employing Inductive Databases in Concrete Applications -- Contribution to Gene Expression Data Analysis by Means of Set Pattern Mining -- Boolean Formulas and Frequent Sets -- Generic Pattern Mining Via Data Mining Template Library -- Inductive Querying for Discovering Subgroups and Clusters.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer science.
_99832
650 0 _aDatabase management.
_93157
650 0 _aInformation storage and retrieval systems.
_922213
650 0 _aPattern recognition systems.
_93953
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aTheory of Computation.
_9158266
650 2 4 _aDatabase Management.
_93157
650 2 4 _aInformation Storage and Retrieval.
_923927
650 2 4 _aAutomated Pattern Recognition.
_931568
700 1 _aBoulicaut, Jean-Francois.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9158267
700 1 _aDe Raedt, Luc.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9158268
700 1 _aMannila, Heikki.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_921881
710 2 _aSpringerLink (Online service)
_9158269
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783540313311
776 0 8 _iPrinted edition:
_z9783540819714
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v3848
_9158270
856 4 0 _uhttps://doi.org/10.1007/11615576
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c95360
_d95360