000 | 03960nam a22006015i 4500 | ||
---|---|---|---|
001 | 978-3-642-13840-9 | ||
003 | DE-He213 | ||
005 | 20240730195919.0 | ||
007 | cr nn 008mamaa | ||
008 | 100701s2010 gw | s |||| 0|eng d | ||
020 |
_a9783642138409 _9978-3-642-13840-9 |
||
024 | 7 |
_a10.1007/978-3-642-13840-9 _2doi |
|
050 | 4 | _aQA267-268.5 | |
072 | 7 |
_aUYA _2bicssc |
|
072 | 7 |
_aCOM014000 _2bisacsh |
|
072 | 7 |
_aUYA _2thema |
|
082 | 0 | 4 |
_a005.131 _223 |
245 | 1 | 0 |
_aInductive Logic Programming _h[electronic resource] : _b19th International Conference, ILP 2009, Leuven, Belgium, July 2-4, 2010, Revised Papers / _cedited by Luc Raedt. |
250 | _a1st ed. 2010. | ||
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2010. |
|
300 |
_aXII, 257 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v5989 |
|
505 | 0 | _aKnowledge-Directed Theory Revision -- Towards Clausal Discovery for Stream Mining -- On the Relationship between Logical Bayesian Networks and Probabilistic Logic Programming Based on the Distribution Semantics -- Induction of Relational Algebra Expressions -- A Logic-Based Approach to Relation Extraction from Texts -- Discovering Rules by Meta-level Abduction -- Inductive Generalization of Analytically Learned Goal Hierarchies -- Ideal Downward Refinement in the Description Logic -- Nonmonotonic Onto-Relational Learning -- CP-Logic Theory Inference with Contextual Variable Elimination and Comparison to BDD Based Inference Methods -- Speeding Up Inference in Statistical Relational Learning by Clustering Similar Query Literals -- Chess Revision: Acquiring the Rules of Chess Variants through FOL Theory Revision from Examples -- ProGolem: A System Based on Relative Minimal Generalisation -- An Inductive Logic Programming Approach to Validate Hexose Binding Biochemical Knowledge -- Boosting First-Order Clauses for Large, Skewed Data Sets -- Incorporating Linguistic Expertise Using ILP for Named Entity Recognition in Data Hungry Indian Languages -- Transfer Learning via Relational Templates -- Automatic Revision of Metabolic Networks through Logical Analysis of Experimental Data -- Finding Relational Associations in HIV Resistance Mutation Data -- ILP, the Blind, and the Elephant: Euclidean Embedding of Co-proven Queries -- Parameter Screening and Optimisation for ILP Using Designed Experiments -- Don't Fear Optimality: Sampling for Probabilistic-Logic Sequence Models -- Policy Transfer via Markov Logic Networks -- Can ILP Be Applied to Large Datasets?. | |
650 | 0 |
_aMachine theory. _9161653 |
|
650 | 0 |
_aCompilers (Computer programs). _93350 |
|
650 | 0 |
_aDatabase management. _93157 |
|
650 | 0 |
_aInformation storage and retrieval systems. _922213 |
|
650 | 0 |
_aAlgorithms. _93390 |
|
650 | 0 |
_aData mining. _93907 |
|
650 | 1 | 4 |
_aFormal Languages and Automata Theory. _9161654 |
650 | 2 | 4 |
_aCompilers and Interpreters. _931853 |
650 | 2 | 4 |
_aDatabase Management. _93157 |
650 | 2 | 4 |
_aInformation Storage and Retrieval. _923927 |
650 | 2 | 4 |
_aAlgorithms. _93390 |
650 | 2 | 4 |
_aData Mining and Knowledge Discovery. _9161655 |
700 | 1 |
_aRaedt, Luc. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9161656 |
|
710 | 2 |
_aSpringerLink (Online service) _9161657 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783642138393 |
776 | 0 | 8 |
_iPrinted edition: _z9783642138416 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v5989 _9161658 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-642-13840-9 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c95823 _d95823 |