000 | 05182nam a22006735i 4500 | ||
---|---|---|---|
001 | 978-3-030-39098-3 | ||
003 | DE-He213 | ||
005 | 20240730201606.0 | ||
007 | cr nn 008mamaa | ||
008 | 200122s2020 sz | s |||| 0|eng d | ||
020 |
_a9783030390983 _9978-3-030-39098-3 |
||
024 | 7 |
_a10.1007/978-3-030-39098-3 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aAdvanced Analytics and Learning on Temporal Data _h[electronic resource] : _b4th ECML PKDD Workshop, AALTD 2019, Würzburg, Germany, September 20, 2019, Revised Selected Papers / _cedited by Vincent Lemaire, Simon Malinowski, Anthony Bagnall, Alexis Bondu, Thomas Guyet, Romain Tavenard. |
250 | _a1st ed. 2020. | ||
264 | 1 |
_aCham : _bSpringer International Publishing : _bImprint: Springer, _c2020. |
|
300 |
_aX, 229 p. 109 illus., 90 illus. in color. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v11986 |
|
505 | 0 | _aRobust Functional Regression for Outlier Detection -- Transform Learning Based Function Approximation for Regression and Forecasting -- Proactive Fiber Break Detection based on Quaternion Time Series and Automatic Variable Selection from Relational Data -- A fully automated periodicity detection in time series -- Conditional Forecasting of Water Level Time Series with RNNs -- Challenges and Limitations in Clustering Blood Donor Hemoglobin Trajectories -- Localized Random Shapelets -- Feature-Based Gait Pattern Classification for a Robotic Walking Frame -- How to detect novelty in textual data streams? A comparative study of existing methods -- Seq2VAR: multivariate time series representation with relational neural networks and linear autoregressive model -- Modelling Patient Sequences for Rare Disease Detection with Semi-supervised Generative Adversarial Nets -- Extended Kalman Filter for Large Scale Vessels Trajectory Tracking in Distributed Stream Processing Systems -- Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Datasets using Deep Learning -- Learning Stochastic Dynamical Systems via Bridge Sampling -- Quantifying Quality of Actions Using Wearable Sensor -- An Initial Study on Adapting DTW at Individual Query for Electrocardiogram Analysis. | |
520 | _aThis book constitutes the refereed proceedings of the 4th ECML PKDD Workshop on Advanced Analytics and Learning on Temporal Data, AALTD 2019, held in Würzburg, Germany, in September 2019. The 7 full papers presented together with 9 poster papers were carefully reviewed and selected from 31 submissions. The papers cover topics such as temporal data clustering; classification of univariate and multivariate time series; early classification of temporal data; deep learning and learning representations for temporal data; modeling temporal dependencies; advanced forecasting and prediction models; space-temporal statistical analysis; functional data analysis methods; temporal data streams; interpretable time-series analysis methods; dimensionality reduction, sparsity, algorithmic complexity and big data challenge; and bio-informatics, medical, energy consumption, on temporal data. . | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer networks . _931572 |
|
650 | 0 |
_aComputer engineering. _910164 |
|
650 | 0 |
_aApplication software. _9167858 |
|
650 | 0 |
_aImage processing _xDigital techniques. _94145 |
|
650 | 0 |
_aComputer vision. _9167859 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aComputer Communication Networks. _9167860 |
650 | 2 | 4 |
_aComputer Engineering and Networks. _9167861 |
650 | 2 | 4 |
_aComputer and Information Systems Applications. _9167862 |
650 | 2 | 4 |
_aComputer Imaging, Vision, Pattern Recognition and Graphics. _931569 |
700 | 1 |
_aLemaire, Vincent. _eeditor. _0(orcid) _10000-0002-6030-2356 _4edt _4http://id.loc.gov/vocabulary/relators/edt _9167863 |
|
700 | 1 |
_aMalinowski, Simon. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9167864 |
|
700 | 1 |
_aBagnall, Anthony. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9167865 |
|
700 | 1 |
_aBondu, Alexis. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9167866 |
|
700 | 1 |
_aGuyet, Thomas. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9167867 |
|
700 | 1 |
_aTavenard, Romain. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9167868 |
|
710 | 2 |
_aSpringerLink (Online service) _9167869 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783030390976 |
776 | 0 | 8 |
_iPrinted edition: _z9783030390990 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v11986 _9167870 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/978-3-030-39098-3 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c96613 _d96613 |