000 | 05736nam a22007335i 4500 | ||
---|---|---|---|
001 | 978-3-540-47698-6 | ||
003 | DE-He213 | ||
005 | 20240730202839.0 | ||
007 | cr nn 008mamaa | ||
008 | 100301s2006 gw | s |||| 0|eng d | ||
020 |
_a9783540476986 _9978-3-540-47698-6 |
||
024 | 7 |
_a10.1007/11908678 _2doi |
|
050 | 4 | _aQ334-342 | |
050 | 4 | _aTA347.A78 | |
072 | 7 |
_aUYQ _2bicssc |
|
072 | 7 |
_aCOM004000 _2bisacsh |
|
072 | 7 |
_aUYQ _2thema |
|
082 | 0 | 4 |
_a006.3 _223 |
245 | 1 | 0 |
_aSemantics, Web and Mining _h[electronic resource] : _bJoint International Workshop, EWMF 2005 and KDO 2005, Porto, Portugal, October 3-7, 2005, Revised Selected Papers / _cedited by Markus Ackermann, Bettina Berendt, Marko Grobelnik, Andreas Hotho, Dunja Mladenic, Giovanni Semeraro, Myra Spiliopoulou, Gerd Stumme, Vojtech Svatek, Maarten van Someren. |
250 | _a1st ed. 2006. | ||
264 | 1 |
_aBerlin, Heidelberg : _bSpringer Berlin Heidelberg : _bImprint: Springer, _c2006. |
|
300 |
_aX, 196 p. _bonline resource. |
||
336 |
_atext _btxt _2rdacontent |
||
337 |
_acomputer _bc _2rdamedia |
||
338 |
_aonline resource _bcr _2rdacarrier |
||
347 |
_atext file _bPDF _2rda |
||
490 | 1 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v4289 |
|
505 | 0 | _aEWMF Papers -- A Website Mining Model Centered on User Queries -- WordNet-Based Word Sense Disambiguation for Learning User Profiles -- Visibility Analysis on the Web Using Co-visibilities and Semantic Networks -- Link-Local Features for Hypertext Classification -- Information Retrieval in Trust-Enhanced Document Networks -- Semi-automatic Creation and Maintenance of Web Resources with webTopic -- KDO Papers on KDD for Ontology -- Discovering a Term Taxonomy from Term Similarities Using Principal Component Analysis -- Semi-automatic Construction of Topic Ontologies -- Evaluation of Ontology Enhancement Tools -- KDO Papers on Ontology for KDD -- Introducing Semantics in Web Personalization: The Role of Ontologies -- Ontology-Enhanced Association Mining -- Ontology-Based Rummaging Mechanisms for the Interpretation of Web Usage Patterns. | |
520 | _aFinding knowledge - or meaning - in data is the goal of every knowledge d- covery e?ort. Subsequent goals and questions regarding this knowledge di?er amongknowledgediscovery(KD) projectsandapproaches. Onecentralquestion is whether and to what extent the meaning extracted from the data is expressed in a formal way that allows not only humans but also machines to understand and re-use it, i. e. , whether the semantics are formal semantics. Conversely, the input to KD processes di?ers between KD projects and approaches. One central questioniswhetherthebackgroundknowledge,businessunderstanding,etc. that the analyst employs to improve the results of KD is a set of natural-language statements, a theory in a formal language, or somewhere in between. Also, the data that are being mined can be more or less structured and/or accompanied by formal semantics. These questions must be asked in every KD e?ort. Nowhere may they be more pertinent, however, than in KD from Web data ("Web mining"). Thisis due especially to the vast amounts and heterogeneity of data and ba- ground knowledge available for Web mining (content, link structure, and - age), and to the re-use of background knowledge and KD results over the Web as a global knowledge repository and activity space. In addition, the (Sem- tic) Web can serve as a publishing space for the results of knowledge discovery from other resources, especially if the whole process is underpinned by common ontologies. | ||
650 | 0 |
_aArtificial intelligence. _93407 |
|
650 | 0 |
_aComputer networks . _931572 |
|
650 | 0 |
_aDatabase management. _93157 |
|
650 | 0 |
_aInformation storage and retrieval systems. _922213 |
|
650 | 0 |
_aApplication software. _9173331 |
|
650 | 0 |
_aComputers and civilization. _921733 |
|
650 | 1 | 4 |
_aArtificial Intelligence. _93407 |
650 | 2 | 4 |
_aComputer Communication Networks. _9173332 |
650 | 2 | 4 |
_aDatabase Management. _93157 |
650 | 2 | 4 |
_aInformation Storage and Retrieval. _923927 |
650 | 2 | 4 |
_aComputer and Information Systems Applications. _9173333 |
650 | 2 | 4 |
_aComputers and Society. _931668 |
700 | 1 |
_aAckermann, Markus. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173334 |
|
700 | 1 |
_aBerendt, Bettina. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173335 |
|
700 | 1 |
_aGrobelnik, Marko. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173336 |
|
700 | 1 |
_aHotho, Andreas. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173337 |
|
700 | 1 |
_aMladenic, Dunja. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173338 |
|
700 | 1 |
_aSemeraro, Giovanni. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173339 |
|
700 | 1 |
_aSpiliopoulou, Myra. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173340 |
|
700 | 1 |
_aStumme, Gerd. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173341 |
|
700 | 1 |
_aSvatek, Vojtech. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173342 |
|
700 | 1 |
_aSomeren, Maarten van. _eeditor. _4edt _4http://id.loc.gov/vocabulary/relators/edt _9173343 |
|
710 | 2 |
_aSpringerLink (Online service) _9173344 |
|
773 | 0 | _tSpringer Nature eBook | |
776 | 0 | 8 |
_iPrinted edition: _z9783540476979 |
776 | 0 | 8 |
_iPrinted edition: _z9783540832034 |
830 | 0 |
_aLecture Notes in Artificial Intelligence, _x2945-9141 ; _v4289 _9173345 |
|
856 | 4 | 0 | _uhttps://doi.org/10.1007/11908678 |
912 | _aZDB-2-SCS | ||
912 | _aZDB-2-SXCS | ||
912 | _aZDB-2-LNC | ||
942 | _cELN | ||
999 |
_c97210 _d97210 |