000 05736nam a22007335i 4500
001 978-3-540-47698-6
003 DE-He213
005 20240730202839.0
007 cr nn 008mamaa
008 100301s2006 gw | s |||| 0|eng d
020 _a9783540476986
_9978-3-540-47698-6
024 7 _a10.1007/11908678
_2doi
050 4 _aQ334-342
050 4 _aTA347.A78
072 7 _aUYQ
_2bicssc
072 7 _aCOM004000
_2bisacsh
072 7 _aUYQ
_2thema
082 0 4 _a006.3
_223
245 1 0 _aSemantics, Web and Mining
_h[electronic resource] :
_bJoint International Workshop, EWMF 2005 and KDO 2005, Porto, Portugal, October 3-7, 2005, Revised Selected Papers /
_cedited by Markus Ackermann, Bettina Berendt, Marko Grobelnik, Andreas Hotho, Dunja Mladenic, Giovanni Semeraro, Myra Spiliopoulou, Gerd Stumme, Vojtech Svatek, Maarten van Someren.
250 _a1st ed. 2006.
264 1 _aBerlin, Heidelberg :
_bSpringer Berlin Heidelberg :
_bImprint: Springer,
_c2006.
300 _aX, 196 p.
_bonline resource.
336 _atext
_btxt
_2rdacontent
337 _acomputer
_bc
_2rdamedia
338 _aonline resource
_bcr
_2rdacarrier
347 _atext file
_bPDF
_2rda
490 1 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4289
505 0 _aEWMF Papers -- A Website Mining Model Centered on User Queries -- WordNet-Based Word Sense Disambiguation for Learning User Profiles -- Visibility Analysis on the Web Using Co-visibilities and Semantic Networks -- Link-Local Features for Hypertext Classification -- Information Retrieval in Trust-Enhanced Document Networks -- Semi-automatic Creation and Maintenance of Web Resources with webTopic -- KDO Papers on KDD for Ontology -- Discovering a Term Taxonomy from Term Similarities Using Principal Component Analysis -- Semi-automatic Construction of Topic Ontologies -- Evaluation of Ontology Enhancement Tools -- KDO Papers on Ontology for KDD -- Introducing Semantics in Web Personalization: The Role of Ontologies -- Ontology-Enhanced Association Mining -- Ontology-Based Rummaging Mechanisms for the Interpretation of Web Usage Patterns.
520 _aFinding knowledge - or meaning - in data is the goal of every knowledge d- covery e?ort. Subsequent goals and questions regarding this knowledge di?er amongknowledgediscovery(KD) projectsandapproaches. Onecentralquestion is whether and to what extent the meaning extracted from the data is expressed in a formal way that allows not only humans but also machines to understand and re-use it, i. e. , whether the semantics are formal semantics. Conversely, the input to KD processes di?ers between KD projects and approaches. One central questioniswhetherthebackgroundknowledge,businessunderstanding,etc. that the analyst employs to improve the results of KD is a set of natural-language statements, a theory in a formal language, or somewhere in between. Also, the data that are being mined can be more or less structured and/or accompanied by formal semantics. These questions must be asked in every KD e?ort. Nowhere may they be more pertinent, however, than in KD from Web data ("Web mining"). Thisis due especially to the vast amounts and heterogeneity of data and ba- ground knowledge available for Web mining (content, link structure, and - age), and to the re-use of background knowledge and KD results over the Web as a global knowledge repository and activity space. In addition, the (Sem- tic) Web can serve as a publishing space for the results of knowledge discovery from other resources, especially if the whole process is underpinned by common ontologies.
650 0 _aArtificial intelligence.
_93407
650 0 _aComputer networks .
_931572
650 0 _aDatabase management.
_93157
650 0 _aInformation storage and retrieval systems.
_922213
650 0 _aApplication software.
_9173331
650 0 _aComputers and civilization.
_921733
650 1 4 _aArtificial Intelligence.
_93407
650 2 4 _aComputer Communication Networks.
_9173332
650 2 4 _aDatabase Management.
_93157
650 2 4 _aInformation Storage and Retrieval.
_923927
650 2 4 _aComputer and Information Systems Applications.
_9173333
650 2 4 _aComputers and Society.
_931668
700 1 _aAckermann, Markus.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173334
700 1 _aBerendt, Bettina.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173335
700 1 _aGrobelnik, Marko.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173336
700 1 _aHotho, Andreas.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173337
700 1 _aMladenic, Dunja.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173338
700 1 _aSemeraro, Giovanni.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173339
700 1 _aSpiliopoulou, Myra.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173340
700 1 _aStumme, Gerd.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173341
700 1 _aSvatek, Vojtech.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173342
700 1 _aSomeren, Maarten van.
_eeditor.
_4edt
_4http://id.loc.gov/vocabulary/relators/edt
_9173343
710 2 _aSpringerLink (Online service)
_9173344
773 0 _tSpringer Nature eBook
776 0 8 _iPrinted edition:
_z9783540476979
776 0 8 _iPrinted edition:
_z9783540832034
830 0 _aLecture Notes in Artificial Intelligence,
_x2945-9141 ;
_v4289
_9173345
856 4 0 _uhttps://doi.org/10.1007/11908678
912 _aZDB-2-SCS
912 _aZDB-2-SXCS
912 _aZDB-2-LNC
942 _cELN
999 _c97210
_d97210