Mendon�ca, J. T.

The quantum nature of light : from photon states to quantum fluids of light / From photon states to quantum fluids of light. J.T. Mendon�ca. - 1 online resource (various pagings) : illustrations (some color). - [IOP release $release] IOP series in quantum technology IOP ebooks. [2022 collection] . - IOP (Series). Release 22. IOP series in quantum technology. IOP ebooks. 2022 collection. .

"Version: 20220901"--Title page verso.

Includes bibliographical references.

1. Introduction -- 1.1. Motivation -- 1.2. Photons, waves and fields -- 1.3. A necessary note part I. Basic photon states. 2. Field quantisation -- 2.1. Quantum mechanical background -- 2.2. Harmonic oscillator -- 2.3. Electromagnetic field quantisation -- 2.4. Canonical quantisation -- 2.5. Photon wavefunction -- 2.6. Quantisation in a medium 3. Coherence -- 3.1. Coherent states -- 3.2. Field representations -- 3.3. Squeezed states -- 3.4. Correlations -- 3.5. Photon entanglement 4. Photon-atom interactions -- 4.1. Hamiltonians -- 4.2. Quantum Rabi model -- 4.3. Three-level atom -- 4.4. Spontaneous emission -- 4.5. Reduced density method -- 4.6. Resonant scattering 5. Boundary effects -- 5.1. Cavity losses -- 5.2. Atom in a cavity -- 5.3. Beam splitters -- 5.4. Time refraction -- 5.5. Temporal beam splitters -- 5.6. Time-crystals -- 5.7. Casimir force -- 5.8. Space-time symmetries -- 5.9. Curved space-time part II. Quantum fluids of light. 6. Laser -- 6.1. Balance equations -- 6.2. Laser cavity -- 6.3. Phenomenological laser model -- 6.4. Relaxation oscillations -- 6.5. Short laser pulses -- 6.6. Amplified spontaneous emission -- 6.7. Susceptibility -- 6.8. Semi-classical laser theory -- 6.9. Quantum laser theory 7. Bose-Einstein condensates -- 7.1. Basic concepts -- 7.2. Photon condensation -- 7.3. Condensation in plasma -- 7.4. Polariton condensation -- 7.5. BEC-laser transition -- 7.6. Photon kinetics 8. Collective atomic emission -- 8.1. Superradiance -- 8.2. Collective recoil emission -- 8.3. Quantum recoil -- 8.4. Cyclotron superradiance 9. Light vortices -- 9.1. Photon OAM -- 9.2. Light springs and fractional vorticity -- 9.3. POAM in optical media -- 9.4. Quantum optics with OAM 10. Superfluid light -- 10.1. Fluid equations of light -- 10.2. Superfluid turbulence -- 10.3. A tale of two fluids -- 10.4. Superfluid currents part III. Quantum vacuum. 11. Basic QED concepts -- 11.1. Klein-Gordon equation -- 11.2. Dirac equation -- 11.3. Volkov states -- 11.4. Quantisation of the Dirac field -- 11.5. Euler-Heisenberg Lagrangian 12. Particle pair creation -- 12.1. Klein paradox -- 12.2. Temporal Klein model -- 12.3. Time-varying fields -- 12.4. Nonlinear trident process 13. Nonlinear vacuum -- 13.1. Vacuum birefringence -- 13.2. Photon acceleration -- 13.3. Photon-photon scattering -- 13.4. Vacuum undulator -- 13.5. Superradiant vacuum 14. The axions -- 14.1. Axion-photon coupling -- 14.2. Axion polariton -- 14.3. Axion beam instability -- 14.4. Axion wakes -- 14.5. Shinning through wall Appendix A. Elementary quantum -- Appendix B. Lagrangians -- Appendix C. Photon kinetic equation -- Appendix D. Curved spacetime.

This book provides an overview of quantum light phenomena and extends the traditional Quantum Optics, to include quantum fluids of light and the complete electromagnetic vacuum. The first part of the book includes basic electromagnetic field quantisation, the characterisation of quantum photon states and elementary photon-atom interactions. Secondly, quantum fluids of light are explored such as recent areas as Bose-Einstein condensation, light vortices and superfluid light. Finally, the last section of the book focusses on a more complete description of quantum vacuum, which includes electron-positron states. The book is intended to make the bridge between these three somewhat distinct aspects of the quantum states of light. The main audiences for the book include researchers and advanced students in quantum technology including quantum optics, metrology and computing. Part of IOP Series in Quantum Technology.

Researchers in quantum technology including quantum optics, metrology and computing.




Mode of access: World Wide Web.
System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.


Professor Jos�e Tito Mendon�ca is the scientific coordinator of the Laboratory for Quantum Plasmas (LQP) of the Instituto de Plasmas e Fus�aao Nuclear (IPFN), and a retired Full Professor of the Physics Department of the Instituto Superior T�ecnico (IST). As a former Head of the Physics Department of IST and a former Director of the Association Euratom-IST for Fusion Research he developed pioneering work on photon acceleration, neutrino-MHD and twisted waves in plasmas.

9780750327862 9780750327855

10.1088/978-0-7503-2786-2 doi


Quantum optics.
Light.
Quantum physics (quantum mechanics & quantum field theory)
Quantum science.

QC446.2 / .M467 2022eb

535/.15