Normal view MARC view ISBD view

The quantum nature of light : from photon states to quantum fluids of light / J.T. Mendon�ca.

By: Mendon�ca, J. T. (Jos�e Tito) [author.].
Contributor(s): Institute of Physics (Great Britain) [publisher.].
Material type: materialTypeLabelBookSeries: IOP (Series)Release 22: ; IOP series in quantum technology: ; IOP ebooks2022 collection: Publisher: Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2022]Description: 1 online resource (various pagings) : illustrations (some color).Content type: text Media type: electronic Carrier type: online resourceISBN: 9780750327862; 9780750327855.Other title: From photon states to quantum fluids of light.Subject(s): Quantum optics | Light | Quantum physics (quantum mechanics & quantum field theory) | Quantum scienceAdditional physical formats: Print version:: No titleDDC classification: 535/.15 Online resources: Click here to access online Also available in print.
Contents:
1. Introduction -- 1.1. Motivation -- 1.2. Photons, waves and fields -- 1.3. A necessary note
part I. Basic photon states. 2. Field quantisation -- 2.1. Quantum mechanical background -- 2.2. Harmonic oscillator -- 2.3. Electromagnetic field quantisation -- 2.4. Canonical quantisation -- 2.5. Photon wavefunction -- 2.6. Quantisation in a medium
3. Coherence -- 3.1. Coherent states -- 3.2. Field representations -- 3.3. Squeezed states -- 3.4. Correlations -- 3.5. Photon entanglement
4. Photon-atom interactions -- 4.1. Hamiltonians -- 4.2. Quantum Rabi model -- 4.3. Three-level atom -- 4.4. Spontaneous emission -- 4.5. Reduced density method -- 4.6. Resonant scattering
5. Boundary effects -- 5.1. Cavity losses -- 5.2. Atom in a cavity -- 5.3. Beam splitters -- 5.4. Time refraction -- 5.5. Temporal beam splitters -- 5.6. Time-crystals -- 5.7. Casimir force -- 5.8. Space-time symmetries -- 5.9. Curved space-time
part II. Quantum fluids of light. 6. Laser -- 6.1. Balance equations -- 6.2. Laser cavity -- 6.3. Phenomenological laser model -- 6.4. Relaxation oscillations -- 6.5. Short laser pulses -- 6.6. Amplified spontaneous emission -- 6.7. Susceptibility -- 6.8. Semi-classical laser theory -- 6.9. Quantum laser theory
7. Bose-Einstein condensates -- 7.1. Basic concepts -- 7.2. Photon condensation -- 7.3. Condensation in plasma -- 7.4. Polariton condensation -- 7.5. BEC-laser transition -- 7.6. Photon kinetics
8. Collective atomic emission -- 8.1. Superradiance -- 8.2. Collective recoil emission -- 8.3. Quantum recoil -- 8.4. Cyclotron superradiance
9. Light vortices -- 9.1. Photon OAM -- 9.2. Light springs and fractional vorticity -- 9.3. POAM in optical media -- 9.4. Quantum optics with OAM
10. Superfluid light -- 10.1. Fluid equations of light -- 10.2. Superfluid turbulence -- 10.3. A tale of two fluids -- 10.4. Superfluid currents
part III. Quantum vacuum. 11. Basic QED concepts -- 11.1. Klein-Gordon equation -- 11.2. Dirac equation -- 11.3. Volkov states -- 11.4. Quantisation of the Dirac field -- 11.5. Euler-Heisenberg Lagrangian
12. Particle pair creation -- 12.1. Klein paradox -- 12.2. Temporal Klein model -- 12.3. Time-varying fields -- 12.4. Nonlinear trident process
13. Nonlinear vacuum -- 13.1. Vacuum birefringence -- 13.2. Photon acceleration -- 13.3. Photon-photon scattering -- 13.4. Vacuum undulator -- 13.5. Superradiant vacuum
14. The axions -- 14.1. Axion-photon coupling -- 14.2. Axion polariton -- 14.3. Axion beam instability -- 14.4. Axion wakes -- 14.5. Shinning through wall
Appendix A. Elementary quantum -- Appendix B. Lagrangians -- Appendix C. Photon kinetic equation -- Appendix D. Curved spacetime.
Abstract: This book provides an overview of quantum light phenomena and extends the traditional Quantum Optics, to include quantum fluids of light and the complete electromagnetic vacuum. The first part of the book includes basic electromagnetic field quantisation, the characterisation of quantum photon states and elementary photon-atom interactions. Secondly, quantum fluids of light are explored such as recent areas as Bose-Einstein condensation, light vortices and superfluid light. Finally, the last section of the book focusses on a more complete description of quantum vacuum, which includes electron-positron states. The book is intended to make the bridge between these three somewhat distinct aspects of the quantum states of light. The main audiences for the book include researchers and advanced students in quantum technology including quantum optics, metrology and computing. Part of IOP Series in Quantum Technology.
    average rating: 0.0 (0 votes)
No physical items for this record

"Version: 20220901"--Title page verso.

Includes bibliographical references.

1. Introduction -- 1.1. Motivation -- 1.2. Photons, waves and fields -- 1.3. A necessary note

part I. Basic photon states. 2. Field quantisation -- 2.1. Quantum mechanical background -- 2.2. Harmonic oscillator -- 2.3. Electromagnetic field quantisation -- 2.4. Canonical quantisation -- 2.5. Photon wavefunction -- 2.6. Quantisation in a medium

3. Coherence -- 3.1. Coherent states -- 3.2. Field representations -- 3.3. Squeezed states -- 3.4. Correlations -- 3.5. Photon entanglement

4. Photon-atom interactions -- 4.1. Hamiltonians -- 4.2. Quantum Rabi model -- 4.3. Three-level atom -- 4.4. Spontaneous emission -- 4.5. Reduced density method -- 4.6. Resonant scattering

5. Boundary effects -- 5.1. Cavity losses -- 5.2. Atom in a cavity -- 5.3. Beam splitters -- 5.4. Time refraction -- 5.5. Temporal beam splitters -- 5.6. Time-crystals -- 5.7. Casimir force -- 5.8. Space-time symmetries -- 5.9. Curved space-time

part II. Quantum fluids of light. 6. Laser -- 6.1. Balance equations -- 6.2. Laser cavity -- 6.3. Phenomenological laser model -- 6.4. Relaxation oscillations -- 6.5. Short laser pulses -- 6.6. Amplified spontaneous emission -- 6.7. Susceptibility -- 6.8. Semi-classical laser theory -- 6.9. Quantum laser theory

7. Bose-Einstein condensates -- 7.1. Basic concepts -- 7.2. Photon condensation -- 7.3. Condensation in plasma -- 7.4. Polariton condensation -- 7.5. BEC-laser transition -- 7.6. Photon kinetics

8. Collective atomic emission -- 8.1. Superradiance -- 8.2. Collective recoil emission -- 8.3. Quantum recoil -- 8.4. Cyclotron superradiance

9. Light vortices -- 9.1. Photon OAM -- 9.2. Light springs and fractional vorticity -- 9.3. POAM in optical media -- 9.4. Quantum optics with OAM

10. Superfluid light -- 10.1. Fluid equations of light -- 10.2. Superfluid turbulence -- 10.3. A tale of two fluids -- 10.4. Superfluid currents

part III. Quantum vacuum. 11. Basic QED concepts -- 11.1. Klein-Gordon equation -- 11.2. Dirac equation -- 11.3. Volkov states -- 11.4. Quantisation of the Dirac field -- 11.5. Euler-Heisenberg Lagrangian

12. Particle pair creation -- 12.1. Klein paradox -- 12.2. Temporal Klein model -- 12.3. Time-varying fields -- 12.4. Nonlinear trident process

13. Nonlinear vacuum -- 13.1. Vacuum birefringence -- 13.2. Photon acceleration -- 13.3. Photon-photon scattering -- 13.4. Vacuum undulator -- 13.5. Superradiant vacuum

14. The axions -- 14.1. Axion-photon coupling -- 14.2. Axion polariton -- 14.3. Axion beam instability -- 14.4. Axion wakes -- 14.5. Shinning through wall

Appendix A. Elementary quantum -- Appendix B. Lagrangians -- Appendix C. Photon kinetic equation -- Appendix D. Curved spacetime.

This book provides an overview of quantum light phenomena and extends the traditional Quantum Optics, to include quantum fluids of light and the complete electromagnetic vacuum. The first part of the book includes basic electromagnetic field quantisation, the characterisation of quantum photon states and elementary photon-atom interactions. Secondly, quantum fluids of light are explored such as recent areas as Bose-Einstein condensation, light vortices and superfluid light. Finally, the last section of the book focusses on a more complete description of quantum vacuum, which includes electron-positron states. The book is intended to make the bridge between these three somewhat distinct aspects of the quantum states of light. The main audiences for the book include researchers and advanced students in quantum technology including quantum optics, metrology and computing. Part of IOP Series in Quantum Technology.

Researchers in quantum technology including quantum optics, metrology and computing.

Also available in print.

Mode of access: World Wide Web.

System requirements: Adobe Acrobat Reader, EPUB reader, or Kindle reader.

Professor Jos�e Tito Mendon�ca is the scientific coordinator of the Laboratory for Quantum Plasmas (LQP) of the Instituto de Plasmas e Fus�aao Nuclear (IPFN), and a retired Full Professor of the Physics Department of the Instituto Superior T�ecnico (IST). As a former Head of the Physics Department of IST and a former Director of the Association Euratom-IST for Fusion Research he developed pioneering work on photon acceleration, neutrino-MHD and twisted waves in plasmas.

Title from PDF title page (viewed on October 5, 2022).

There are no comments for this item.

Log in to your account to post a comment.